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Many-body optics 
11. Dielectric constant formulation of the binding energy of 
a molecular fluid 

R. K. BULLOUGH 
Department of Mathematics, University of Manchester Institute of Science and 
Technology 
MS. received 30th December 1968, in  final fomz 20th May 1969 

Abstract. We indicate how the microscopic optical scattering theory already reported 
elsewhere can be developed into a theory of the binding energy of a molecular fluid. 
We first report (k, w) dependent dielectric constants for the molecular fluid: these 
determine the linear response in all processes which depend on virtual optical processes 1 

alone. We then briefly describe bulk contributions to the stopping power, to the 
emission of Cerenkov radiation and to the collective molecular binding in terms of 
these dielectric constants. We take full account of the radiation field at every order in 
the ensemble averaged polarization diagram approximation and we extend the theory 
of the non-relativistic Lamb shift. We show that, in the continuum approximation 
which neglects thermal fluctuations, the molecular binding energy is completely 
determined by the frequency spectrum of the transverse complex refractive index. 
We make a numerical estimate of the importance of strictly transverse contributions 
to the binding energy in this approximation. 

We defer consideration of the problems posed in part I of this series to the follow- 
ing paper 111. We develop the theory of the longitudinal dielectric constant in full 
detail there. 

1. Introduction 
We have already reported elsewhere in brief (Bullough et al. 1968, Bullough and Hynne 

1968, to be referred to as A, B, respectively) an optical scattering theory for a molecular 
fluid which, within the polarization diagram approximation there defined, takes account of 
intermolecular correlation to all orders. We have already presented as the previous paper 
in this journal (Bullough 1968, to be referred to as I) the first of a series of papers in which 
that optical scattering theory will later be developed in greater detail. There the scattering 
theory will emerge from a unified theory of the optical properties of the molecular fluid, 
which is not restricted to scattering properties alone and which provides a comprehensive 
view of the microscopic interactions which may be said to occur inside the fluid. It is 
therefore capable in principle of determining from fundamentals all of the macroscopic 
properties of a molecular fluid, and in practice it certainly yields all of those macroscopic 
properties which depend on long-range electromagnetic interactions. 

A theory of this kind is naturally a complicated one and its adequate development relies 
first of all on an exhaustive treatment of the integral equation which underlies it. This 
was the immediate programme embarked on in I and which was to be continued in the 
next two papers of this series. However, we have found it convenient to depart a little 
from the programme of publication there envisaged: we shall take up and complete the 
analysis of the fundamental integral equation of the theory in the three papers which will 
constitute parts 111, IV and V of this series, rather than in the parts I1 and I11 originally 
intended. We shall also use this second paper I1 to report now a number of connected 
physical results of the theory simply as results. These are mainly in the theory of binding 
energy, and this paper I1 therefore constitutes a very much more precise statement of the 
introductory remarks on these which appeared in the final $4 of I. 

This compact statement of these results, their interrelations and their connection with 
the scattering theory (L4, B) reported will greatly help the presentation of the work which 
follows later. In  particular, the results on binding energy presented here are especially 
relevant to the forthcoming paper V of this series: there we shall investigate the semi- 
phenomenological binding energy theory of Dzyaloshinskii et al. (1961) in the complex 
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dielectric constant approximation v e  first introduce below. We shall be able to draw on 
the result (22b)  reported below to contrast the results of the semi-phenomenological theory 
with those of the strictly non-phenomenological strictly microscopic theory reported here. 
The  microscopic theory of binding energy will be presented in detail rather later in this 
series. 

The  whole microscopic theory is ultimately a quantal theory, even though the funda- 
mental integral equation presented for study in I was a classical one, for this integral 
equation can be derived from the quantum theory. Indeed, the scattering theory already 
reported (A, B) starts from the interaction Hamiltonian density in dipole approximation 
in Heisenberg representation and in second quantization 

Hint( x, t )  = - e 2 6( x - x i )  ri( t )  , e( x,  t )  
I 

in which e(x, t )  is a field operator and the eul(t)  are electric dipole operators. It goes on to 
. show that the most general form of the integral equation studied in I can be derived in 
the polarization diagram approximation, and hence that it is possible to derive the macro- 
scopic complex refractive index of the molecular fluid from the microscopic interaction (1). 
Then this refractive index can actually be used to derive to a good approximation the 
phenomenological result for the total optical scattering cross section in the precise form 
obtained by Einstein (1910). 

Our purpose here is to indicate in brief how we are able to use the same 
theoretical structure to extract expressions for the binding energy and free energy of a 
molecular fluid. In  particular, we wish to indicate the essential steps of an argument, which 
shows how it comes about that the microscopic intermolecular scattering processes can 
lead to an essentially collective process of binding for the bulk of the fluid. T o  this end we 
first report ( k ,  w)-dependent dielectric constants for the molecular fluid and contrast these 
with the dispersion relations already partly derived in detail in I. Then we use these di- 
electric constants both to express and to estimate the contribution of the interaction (1) to 
the binding energy of the fluid. In  this way we greatly facilitate the presentation of the 
details of a complicated and far-reaching theoretical structure when we come to develop 
this later. 

2. The dielectric constants 
This calculation is certainly non- trivial when proper account is taken, as has been done, 

of the optical extinction theorem (for this cf. especially I, and Rosenfeld 1963, Mazur 
1958). Even so, we find we can define longitudinal and transverse dielectric constants 
c l , t ( k ,  w )  for the molecular fluid by 

In these expressions .(U) is the free-particle (isotropic) polarizability of I ;  and n is the 
average number density. As reported (A, B), we obtain an integral equation for the coupled 
photon polarization propagator I l ( x ,  x’; t - t’) corresponding to a fixed molecular configura- 
tion, and then derive the classical scattering equation of A, equation ( 7 )  (and implicitly 
that of I) by an ensemble average. We thus adopt the same approximations for the quantal 
theory as reported previously, namely the polarization diagram approximation (broadly 
equivalent to the random phase approximation (r.p.a.)) and a Born-Oppenheimer type? 
approximation. Thereafter we work to all orders in intermolecular correlation and include 
all retardation effects. 

The  quantities J, , , (k ,  w )  describe this intermolecular correlation. They take the exact$ 
forms already quoted for arbitrary k in I in the theory of dispersion. As there, 

cl, t (k ,  U )  - 1 = 4 ~ n ~ ( w ) { l  -$vc/.(w) -na(w)J, ,  t ( k ,  U ) } - ’ .  (2) 

J , (k ,  w )  = 6 .  J(k,  w )  . &; J,(k,  w )  = ~(6). J(k,  w )  . U ( & )  (3a)  
Quasi-static approximation (see I). 

$ However, we now include radiation reaction, and integrals are convergent part integrals in the 
sense of A where necessary: this modifies the quantities J1 and J 3  and above, but not J 2  as these 
quantities appear in equation (3b) .  The ‘surface term’ problem of A arises again, but we ignore this 
untilla ter in this series. 
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(where i; and U(&) are unit vectors along and orthogonal to k respectively). Then (cf. 
especially I, (4.17) and (4.18)t) 

r 

n a ( w ) J ( k ,  w )  = 2 ( n + J ) ) ‘ J r ( k ,  w )  (3b) 
r = l  

whilst the tensors J,(k, w )  are of second rank and are of cluster integral type: 

J l ( & , w )  = ~ { n - l S ( r ) + g z ( r ) - l } F ( r ,  w)exp(ik. r ) d r  (4a) 

Jdk, w )  = 1s {n-lS( r + r ’ ) g z ( y )  +g3(r,  r ‘ )  - g z ( k ( y ’ ) }  

x exp(ik . ( r + r ’)) F( r ,  U )  . F (  r ’, w )  d r d r’ etc. (4b) 
I n  these expressions the g, are v-body correlation functions ; F is the free-field dipole photon 
propagator of I, ( 2 . Q  

F( x ,  x’; W )  = F(r, U )  

= (v;70+k02U)exp(ikor)r-1; k, = wc-1, Y = I x -  x’ j .  (5) 

The form of the intermolecular correlation now means that the dielectric constants 
have the following properties : 

E 1 ( O ,  w )  = E t ( O ,  w ) ,  et(m,k,i,  w )  = m?(w). (6 )  

In  this m?(w) is a root of et(kZ, U )  = k 2 k o - 2  = intz(w): it is evident that mt2((w) is exactly 
the complex refractive index already both reported (-4, B) and derived in more detail (I). 
Moreover, the roots of El(k, w )  = 0 are the longitudinal dispersion relations of the de- 
tailed theory (I). Next, we must look at the complex dielectric constant approximation: 
this assumes that both k < 2-l and k, < where 2772 is an intermolecular correlation 
range, so that in the complex dielectric constant approximation (cf. 4 ,  13) we can set k = 0 
in the ~ ~ , ~ ( k ,  w )  and 

q(0, w )  = q(0, w )  = wztz(w) = ~ ( w )  (say). (7) 
These results make the complex dielectric constant approximation an important physical 
approximation.$ 

Because of the optical extinction theorem the total dipole response 

P(k ,  w )  = P , ( k , w )  + P , ( k ,  w )  

to a field probe E(k,  w )  satisfies the pair of relations 

The  symbolize complicated operators depending on k ,  w and the surface I; of the whole 
fluid system. The important point is that both the longitudinal and the transverse response 
functions break into two parts: one part depends on the e r , , ( k ,  w )  alone, and we call it the 
virtual response; the other part depends on these, on nzt2(w) and on I;, and we call it the 
real response. In  the total transverse response the virtual response dominates in the non- 
relativistic region k $ ko; the real response dominates in the relativistic region k N K O ;  

In the most general form of the complex dielectric constant approximation we replace F of ( 5 )  
i See second footnote on p. 478. 

by VV7r-l +3ikO3U (see A, B and paper V to follow in this series). 
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and on the free-field energy shell k = K O  there is a finite real response, but the virtual 
response is exactly zero. Thus when E is light only the real response is excited. I n  this 
case the theory now coincides exactly with the refractive index theory of both the report 
(A, B) and the detailed theory. 

These particular results will all be developed in detail in parts I11 and IV of this series 
of papers. We now demonstrate here how the virtual response dominates the external 
scattering of light in the non-relativistic region, and something of how that changes in the 
approach to the relativistic region. 

3. Application to electron stopping power and CYerenkov radiation 
The complete theory depends on the total response-longitudinal plus transverse, 

virtual and real. We shall here quote the contributions of the virtual responses only: 
evidently the real responses explicitly describe the influence of the boundary of the system 
on the cross section and, for example, the transverse real response is concerned with the 
description of the conversion of the excited internal transverse modes into externally 
observable Cerenkov radiation. We find from the virtual response that the energy dissipated 
per unit length by a fast electron travelling at velocity E =  pc is? 

1. (9) 
vk 1 ( k y  - ko2)ko2 Et@, W )  - 1 

-- "-Tj:f/ WdwIm[(l----) - 
dz: r v 2  0 E d k ,  U )  k 2 - k o 2  k2--Et(k, W)k,2  

In  the complex dielectric constant approximation ( 7 )  holds and (9) is expressible in the 
exact forms given by Fano (1956). The  theory here thus justifies and generalizes Fano's 
argument based on an intuitive microscopic oscillator model. However, even in the complex 
dielectric constant approximation our expressions for E ( W )  are to be obtained from (2) and 
are complex because they contain, as fluctuations, microscopic multiple-scattering processes 
to all orders: more generally, the ~ ~ , ~ ( k ,  U )  are k-dependent, whilst the addition of the real 
response in principle extends the theory to include the important surface effects. We note 
also that in the complex dielectric constant approximation (9) depends only on Im{E(w)} 
and \ c ( w ) ~ ,  which are Im(mt2(w)) and l m t 2 ( ~ ) I .  But within the complex dielectric constant 
approximation Im{nzt2(w)) is expressible as the Einstein opticdscattering cross section (A, B). 
Thus fork< 2-l (so that vk < c2-I) (9) is expressible in terms of the Einstein (1910) scattering 
cross section. Evidently it is the complex dielectric constant approximation which justifies 
all previous work on Cerenkov radiation given in terms of the refractive index. 

The most significant feature of (9) in the present context is the contribution of the 
transverse virtual processes which control the emission of Cerenkov radiation. For we can 
now show how this is related to the contribution of transverse virtual photons to the inter- 
molecular binding energy. 

4. Dielectric constant formulation of the binding energy 

binding energy$ : 
We have been able to show that the following is an exact formula for the total mean 

- ti ede '  
W O ,  = -&7j, dwcoth ($1 

Tr(F(x,  x ' ; ~ )  . (B(+v', x ; ~ ) ) , , - c . c . ) d x d x ' .  (10) 

In  this (...),, denotes an ensemble average and B is the polarization propagator associated 
with each configuration of the molecules; e is the actual electronic charge and e' is now the 
coupling constant in Hint of (1) ; T is the temperature and k, is Boltzmann's constant and 
we eventually suppose the ensemble average is taken with coupling constant e and not e' 
(see $5) .  

t Theci, t(k,  w )  depend on k (and w )  alone and not on k = Kk, as (2) shows; K O  is to be real in (9). 
$ Exact in terms of the chosen interaction Hint, and exact also only as a thermodynamic potential. 

By taking the ensemble average with coupling constant e we appeal to the Born-Oppenheimer approxi- 
mation and work towards the mean ground-state energy, which is (16). 

xs,/"~ 

A 
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In the absence of time-dependent intermolecular correlations the more significant excita- 
tions are probably the electronic excitations : therefore for simplicity we shall here simply 
replace the coth in (10) by unity. We then find that the contribution of virtual photons 
(i.e. the contribution of the total virtual response only) is expressible in terms of theEl,t(k, U )  

as 

in which, as in (lo), V is the volume of the fluid system. Up to neglect of one-particle self- 
energies the contribution of the longitudinal modes is formally identical with that in the 
plasma (Nozikres and Pines 1958); but the details are very different since we are concerned 
with the molecular fluid at normal temperatures, Indeed a complete description of the 
internal field up to all orders of multiple scattering within the polarization diagram approx- 
imation is concealed within El(k, w )  in (2). Comparison of (11) with (9) shows that the 
connection with electron stopping power is identical with that in the plasma for the 
longitudinal virtual modes. 

The  exhibition of the transverse contributions in an expression like (11) is an entirely 
new feature (as far as we are aware?) and is one of the more important results of the theory. 
Its connection with the emission of Cerenkov radiation is obvious from (9), though perhaps 
not easy to exploit experimentally. It should be noted that when the velocity of light c+ tc) (1 1) 
is indeed formally identical with the result for the plasma (Noziitres and Pines 1958), but 
it should also be noted that Im(cl) contains transverse parts of the free-field photon propa- 
gator F whether c< cc or c-+co.$ In  consequence in the cont inxm approximation, which 
we discuss below in 5 7 ,  there are transverse contributions to AE,,, even when c+w. 

In  the complex dielectric constant approximation (11) can be expressed in the form 

and this is approximately 

is a screened photon propagator. Another form of this result, which splits off one-particle 
self-energies (these cannot really be treated within the complex dielectric constant approxi- 
mation-see 5 6 )  is 

- AEtOt = - ~ T r ~ o y T ~ ~ l d w I m  e de‘ [I____i?/ €(U) - 1 (F(r ,  w ) .  F(r ,  w))dr  
% \ 477 all space 

1 . (U) - 1 
+-----+iko3U . 

47 

Since (7)  holds in the complex dielectric constant approximation the expressions (12)-( 14) 
depend only on the real and imaginary parts of the refractive index: thus there is a direct 
connection with the optical scattering theory (A, B) in the long-wavelength virtual photon 
theory, which is the complex dielectric constant approximation. 

k,  w )  were known func- 
tions of the coupling constant e’ : in this case the complex dielectric constant approximation 
results (12)-( 14) in particular express the binding energy in terms of the spectrum of the 

t We have already reported (Bullough and Obada 1969) a comparable expression for the isotropic 
molecular crystal. 

5 In the Lorentz field term (cf. I, 9 4, below (4.23)). 

The results (1 1)-( 14) would be very powerful results if the 
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frequency-dependent dielectric constant .(U) nz:(w) alone. In  practice the e l ,  , (k ,w)  are 
available as functions of e’ only through the polarization diagram approximxion results (2). 
Since the J t , l (k ,  w ;  e’) are power series in ef2, we are obliged to exhibit AE,,, as a power 
series in e2, This series is a ‘closed loop’ expansion consequent on the restriction of the 

to the polarization diagram approximation. It is given in $ 5 .  
There is one important case within the polarization diagram approximation (but no 

other additional approximation) in which the integration over e’ can be carried out to yield 
a closed form: this is the case of a single molecule of polarizability .(U) at the fixed point 
xo outside V bound to a dielectric region inside V. For this we obtain instead of (10) (and 
still omitting the coth) the fundamental asymptotic formula 

, F( x’, $0; U )  d x  dx’-c.c.} dw. (15) 
This formula is easily developed by iteration of the integral equation for ll already reported 
(cf. A, equation (3)). 

5. The closed-loop expansion for mt,, 
‘potentials’ U ,  

Substitution of the El,t(k,  w) from (2) into (11) yields the expansion in terms of v-body 

- 
hEtOt = + V(&z2 / g2(r)UZ(r) d r+4n3  / / g3(r, r ’ )  Lr3(r, r ’ )  d r  d r ’ s  ...}. (16) 

J Y  J y J  v ,  
We ignore one-body terms for the moment, and assume both that the g, do not depend on 
the coupling constant e’, and that we can consistently ignore surface effects in inverting 
from k space. The  first assumption means we compute an ensemble averaged energy. If 
we admit that the g, depend on e’, we obtain a free energy or thermodynamic potential (but 
only if we can perform the integrations over e’!)?. The second assumption means that the 
contribution of the real modes is now implicitly concealed in (16), presumably as a surface 
contribution closely related to the ‘surface terms’ of the scattering theory already reported 
(A, B). This surface contribution has not yet been explored, but it is intuitive that the 
virtual modes alone determine the bulk binding and the real modes, exhibited in the ‘real 
response’ in (8), determine the surface energy. 

The  first-order contribution to U2(r)  in terms of the free-particle polarizabilities x (  0) 

is 

U2(I)(r) = d ~ ( x ( i w ) } ~ ( 3 r - ~  + 6K0~-3  t 5k02r-2  + 2ko3r-I + KO4) 

(17) 

This is exactly the Casimir-Polder interaction (Casimir and Polder 1948). The first-order 
contribution U3(I) (r ,  r’) to br3(r, r’) is the Aub-Zienau three-body interaction (Aub and 
Zienau 1960) ; first-order contributions to U, are the properly retarded v-body potentials 
of McLachlan (1963)’ and at each order retardation modifies the asymptotic behaviour at 
large particle separations. However, becauseg,(r) = 0 for Y < a (where a is an intermolecular 
diameter) we can sum all two-body interactions and find that U2(r) is neither the Casimir- 
Polder nor the London interaction. I t  is in fact the two-body potential exact in the polariza- 
tion diagram approximation 

Uz(Y) = - dwlnde t  [lU-x2(iw)F(r, iw).  F(r, iw)ll. (18) 27i sm 0 

t Since Hint is the ‘long-range part’ only, there is a short-range part of the g, which does not 
depend on the e’. 
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Some comparable results apply to Cry for v 2 3 ,  and these must be explored in the detailed 
theory. Evidently the inclusion of the coth function of (10) makes all of these potentials 
temperature-dependent. 

6 .  The one-body terms 
At first sight the dipolar form of Hint restricts the potentials to their long-range part 

(and the g, look after the short-range part). However, the scattering theory correctly 
handles radiation reaction (this is one consequence of the identity of the two extinction 
coefficients T~ and T ,  reported in the papers A, B), and we can expect that the theory 
contains a correct formulation of the one-body non-relativistic Lamb shift of the ground 
state. We find? 

which is undefined as R becomes large. We therefore choose the natural cut-off for a non- 
relativistic electron theory R = m,c2A-1 (in which me is the electron mass). For larger R 
the integrand has branch points on the contour of integration at the roots of 

1 - ~ W ~ C - ~ C I ( ~ W )  = 0 (20) 
and thus approximately at w = #mec2(Aa0)-l. Here cto = e2fi-1c-1 is the fine-structure 
constant, The wavelength corresponding to this singularity is approximately 12 x cm 
-comparable both with the ‘size’ of the electron and more precisely with the wavelengths 
of the 37 (or p) mesons.$ Our chosen cut-off is at the Compton wavelength of the electron 
A, = 2rrh(mec)-1 = 2 . 4 ~  cm, and excludes this. 

T o  first order in go, (19) reduces to 

The E,  are free molecule energies and vOs is a matrix element of the velocity of the free 
molecule’s optical electron. Equation (21) is the celebrated Bethe formula (Bethe 1947). 
Second-order corrections to this in (19) are about 0.2O4, and hence about one order of 
magnitude bigger than current uncertainty in the relativistic calculations (cf. Physics Today 
1966). We reach (21) from the first-order term of (19) by ignoring a term quadratic in R$. 
This term can be interpreted as the electromagnetic correction to the rest mass of the 
electron (Feynman and Hibbs 1965) and it vanishes with e, but its connection with gauge 
invariance may also suggest some correspondence with the relativistic photon mass diver- 
gence. The  calculation differs from Bethe’s original calculation not least in that this diverg- 
ence, rather than the electron mass divergence, appears, but we have also been able to 
extract the linearly divergent non-relativistic kinetic electron mass from the first-order 
theory. 

Equation (19) does not exhaust the ‘self-interactions’ in t h e h e o r y .  However, it does 
exhaust all one-body terms (i.e. those which contribute to lim AE,,,/nV) in dipole approxi- 

It is apparently possible to extend the theory to admit interactions of spin magnetic 
moments with the radiation field also. For the coupled integral equations for the photon 
propagators which include all dipole magnetic interactions within the polarization diagram 
approximation have been reported (Obada and Bullough 1969) for the crystal, and these 

t In  this form we ignore at least pure imaginary contributions on the big &circle ,wI  = R. 
$ mcr = 207m,, whilst 3m,12ao = 205*5m,! 
5 Second-order corrections to (21) ignore a term cubic in R. Some of the terms retained may not 

I[ The polarization diagram approximation is exact at first order, but there are additional one-body 

mation.1, n+O 

be physically significant. 

terms outside the polarization diagram approximation which are not described by (19). 
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can be applied to the fluid within the Born-Oppenheimer approximation. Both these and the 
one-body results discussed in this $ 6 are some indication of the comprehensiveness of the 
microscopic theory. 

We now look at a second physically important approximate form of the theory-the 
continuum approximation. 

7. The continuum approximation 
The thermal fluctuation theory, which overlies the quantal fluctuations responsible for 

the binding energy, (apparently) means that there are no natural quantal oscillators of the 
coupled system. But in the continuum approximation we eliminate the cluster integral 
series J,,,(K, w )  in (2), and this situation is changed. This replacement means, first of all, 
that we can move consistently from (10) to an expression like (11) only by exhibiting the 
Fourier transform of F( r, w )  as a conditionally convergent integral. With this proviso we 
can then express the continuum approximation to AE,,, as 

_. { E &  w )  - 1 ) 2 ( k 2 - k o 2  
AE,,, = - 27ri (2% s,” dw In [- ( k 2  - E &  W ) k 0 2 } 2 E I ( k ,  w>{47rna(w)}3 

in which the ~ , ( ~ ) ( k )  are the roots of Et(k, U )  = k2ko-’ and the wi(l)(k) are the zeros of 
e l (  k ,  w )  ; the ws are the poles of a( w )  (kw, = E, - E ,  in terms of the free-particle energies) 
and we have supposed that the ~ ~ , ~ ( k ,  w )  - 1 have no zeros. The ‘pure refractive index 
theory’ of the continuum approximation therefore replaces the free-field and free-particle 
oscillators by the modes of the coupled system exactly as in the rigid molecular crystal at 
T = 0 (Bullough and Obada 1969). But the result like (22b) for the crystal is exact in the 
polarization diagram approximation (Bullough and Obada 1969), whilst equations (22) are 
valid for the fluid only if the J l , t  in the can be neglected. Equations (22) also ignore 
the coth in (10): if the coth is included and the Jl , t  are neglected, there is an approximate 
thermal decorrelation scheme which replaces (22b)  by an expression for the total free energy 
at temperature T ;  this expression is in the form of the sum of the free energies of the several 
oscillators in (22b) and of additional oscillators, just as it is for the crystal (Bullough and 
Obada 1969). 

The  results (22) mean that in the continuum approximation the binding energy is com- 
pletely determined by the refractive index m,(w), for all the results like ( 7 )  for the complex 
dielectric constant approximation apply in this approximation also. To this extent the 
microscopic theory supports the fundamental postulate of the phenomenological theory of 
Lifshitz (1956), but so far we have only been able to obtain the closed-loop expansion of 
Dzyaloshinskii et al. (1961) in terms of .(U) - 1 at the expense of neglecting both fluctuations 
and the Lorentz field term in €(U).? 

I t  is an intriguing fact that the closed-loop expansion in &(U) ,  which is (16), is obtained 
as a part of the result of integrating [{mtZ(w) - l) /eirna(w)] -l-  1 on e as in $ 4 .  But we have 
only been able to isolate it and extract it from the ( k ,  w)-dependent dielectric constants, 
and the reason lies in the fact that k is a free variable in the theory of the virtual modes, 
but satisfies the dispersion relation 12 = m,(w)ko in the theory of the transverse real modes 
-the only modes which are excited by light. 

If we limit the .(U) to a single oscillator (i.e. set .(U) = a(0)w,2(w12-w2)-1)inthe 
continuultl_approximation, we can easily estimate long-wavelength virtual photon contribu- 
tions to AE,,J and also the contributions of both U( 2 3)-body terms and the radiation field 
to this. We find, if we cut off the integral over k at k = Ikj < k, = ( 3 ~ ) l ’ ~ a - ~ ,  that this is 

f The problem lies in the integral over coupling constant. This difficulty is noted already in I, $4; 
next is an amplification of the second ‘difficulty’ reported there. 

$ hEtOt is easily expressed as the integral in closed form, which is (22b). 
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equivalent to estimating the longitudinal two-body contributions as hard-sphere contribu- 
tions wi tha  closest distance of approach of a. We define the contribution of the radiation 
field to AE,,, as that part of (22a) which vanishes when c+co there. With this eliminated 
we find for (22a) 

(ZY)! 
(r!)222'(2r - 1) ' 

a, = 

Then, if, for example, ~ ( 0 )  = 2, the ratio AE(V)/AE(2)  of v-body contributions is as follows: 
v = 3, -12.5%; v = 4, +5*9%; v = 5 ,  -1.6%; v = 6, +0*7%, exactly as for the cubic 
crystal (Bullough and Obada 1969). The  rate of convergence is therefore slow. 

The  contribution of the radiation field is more complicated : the two-body contributions 
are (k, = ulc-l) 

? i ~ ~ V k , ~ { A ~ ( ~ ) ( a k ~ ) - ~  In(akl) + A,(2) + O(kla)}n2{a(0))2 (24) 

in which the A's are O(1). The ratio of the leading term in (24) to the two-body contribution 
to (23) is - {2/(3~)~'~)a~k,~. With a = 1 A and 2rrk1-l = lo3 A (12.4 ev) the ratio is 
approximately equal to - 1 x whilst AE(2)  N 0.02 ev per particle; but with a = 10 A 
and 27i'k1-I = 250 A (49.6 ev) the ratio is approximately equal to - 30/, whilst the 
AE(*) N 0.09 ev per particle.? The  v( B 3)-body contributions of the radiation field extend 
each of the A's in (24) by series in 

€(O) - 1 
Qnna(0) = - 

40)  + 2 

for example 

Of course, it is easy to extend the whole of the theory reported here to the case of a 
molecular fluid of several different components, and this has been done. The  details of 
the optical dispersion theory of multi-component systems-the real response to light- 
have already been presented in I. The  corresponding dielectric constant theory will be 
given in V. 

This completes a brief presentation of some of the main results on the binding energy 
of a molecular fluid which will be obtained in the course of the development of the rigorously 
argued detailed theory. With this indication of both the route we shall follow and some 
of the significant physical conclusions we shall reach, we can turn first of all in the papers 
to come to a derivation of the particularly important expressions (2) and (8). These emerge 
in the study of the fundamental integral equation of the theory, and this study is the pro- 
gramme for the papers 111 and IV to follow next. 
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